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Disclaimers

I this talk with be filled with white lies and half truths

I the speaker has almost no understanding of the technical
details in recent work on Ricci flow



Poincaré Conjecture

I Poincaré Conjecture: The sphere is the only three dimensional
closed manifold that is simply connected.

I terminology

I manifold: a space that locally looks like Euclidean space
I closed: finite in extent with no edges
I simply connected: every closed loop can be shrunk to a point

or, equivalently, every circle is the boundary of a disk

I examples of closed manifolds (two-dimensional): sphere,
torus, “two-holed” torus
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I topology looks at shape while ignoring information about
distances and angles

I for geometry, require manifolds to be smooth and orientable
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Gluing to get surfaces
I Glue square to get torus
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Gluing to get surfaces

I Glue all points at infinity to get sphere using stereographic
projection
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A small taste of geometry

I walk around one point on
the torus

I walk around one point on
the two-holed torus
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Geometry on the plane

Cartesian coordinates:
Euclidean distance between (x , y) and
(x + dx , y + dy) is

ds2
E = dx2 + dy2

dx

dy
dsE

Polar coordinates:
Euclidean distance between (r , θ) and
(r + dr , θ + dθ) is

ds2
E = dr2 + r2dθ2

dr

rdΘ

dsE



Geometry on the plane

I get length of a curve C by adding up (integrating) dsE along
curve:

L =

∫
C

dsds1

ds2

dsk

dsn

I Example: length of a circle of radius r = r0

ds2
E = dr2 + r2dθ2 = 0 + r2

0 dθ2

so

L =

∫
C

ds =

∫ 2π

0
r0 dθ = r0 · 2π

dΘ

r0

dsE�r0 dΘ



Geometry on the sphere

I Claim: With stereographic projection, lengths on the sphere
are related to lengths in the plane by

ds2
S =

(
1

1 + 1
4 r2

)2

ds2
E

I express dsE in polar coordinates

ds2
S =

(
1

1 + 1
4 r2

)2

(dr2 + r2dθ2) =

(
1

1 + 1
4 r2

)2

dr2 +

(
r

1 + 1
4 r2

)2

dθ2
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Geometry on the sphere

I Example: spherical length of latitude circle
I projects to a Euclidean circle of some radius r = r0
I again have dr = 0 so

LS =

∫
C

ds =

∫ 2π

0

r0

1 + 1
4 r2

0

dθ =
r0

1 + 1
4 r2

0

· 2π
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Geometry on the sphere

I Example: spherical length of longitude semi-circle
I projects to a Euclidean ray at some angle θ = θ0

I let r range from 0 to r0
I now have dθ = 0 so

LS =

∫ r0

0

1

1 + 1
4 r2

dr = 2 tan−1
( r0

2

)
expired license id = 3332.0594.6837.3963, date = 2005-6-30
register at www.javaview.de



A different geometry
I a new distance expression

ds2
H =

(
1

1− r2

)2

ds2
E =

(
1

1− r2

)2

dr2 +

(
r

1− r2

)2

dθ2

I restrict to the Euclidean disk with r < 1

1

I H-length of Euclidean circle centered at origin
I with dr = 0

LH =

∫ 2π

0

r0
1− r2

0

dθ =
r0

1− r2
0

· 2π

I note that H-length increases without
bound as r0 approaches 1

r0



A different geometry

I H-length of a Euclidean ray starting at origin
I with dθ = 0 and going from r = 0 to

r = r0

LH =

∫ r0

0

1

1− r2
dr = ln

(1 + r0
1− r0

)
I note that H-length increases without

bound as r0 approaches 1

r0

I H-length is short for “hyperbolic length”

I metric view of Poincaré disk model of the hyperbolic plane
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Lines in the hyperbolic plane
I fix two points and ask “What path has the shortest

H-distance between these two points?”
I shortest hyperbolic curve between two points is along the

Euclidean circle through the points that is orthogonal to the
boundary of the Euclidean disk r < 1

I refer to these shortest hyperbolic curves as hyperbolic lines or
H-lines
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Angles in the hyperbolic plane

I hyperbolic angle between two hyperbolic lines with a common
point is the Euclidean angle between the tangents to the
Euclidean boundary-orthogonal circles



Octagons in the hyperbolic plane
I look at regular octagons in the hyperbolic plane

I small octagon has interior angle of about 3π/4
I large octagon (vertices near boundary of disk) has interior

angle of about 0
I in between, there is a regular octagon with an interior angle of

π/4.
I can glue this octagon into a smooth “two-holed torus”
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Geometrization of surfaces
I can construct a smooth “two-holed” torus using an octagon in

the hyperbolic plane
I terminology: we say that the “two-holed” torus admits a

geometric structure modeled on the hyperbolic plane H2

I a geometry on a manifold is a model geometry if it is simply
connected and homogeneous

I simply connected: every loop can be shrunk to a point
I homogeneous: the geometry of the manifold looks the same at

all points
I for two dimension, there are three model geometries:

I the “round” sphere S2

I the Euclidean plane E 2

I the hyperbolic plane H2

I model geometries provide a way of classifying closed
two-dimensional manifolds

I the sphere admits a geometric structure modeled on S2

I the torus admits a geometric structure modeled on E 2

I for n ≥ 2, an “n-holed” torus admits a geometric structure
modeled on H2
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Geometrization of 3-manifolds

I does this classification by model geometries work in dimension
three?

I in dimension three, there are 8 model geometries
I three obvious generalizations: S3, E 3, H3

(these are homogeneous and isotropic)
I five less obvious ones: S2 × R, H2 × R, S̃L(2, R), Nil, Sol

(these are homogeneous but not isotropic)

I however, not every three-dimensional manifold admits a
geometric structure

I to deal with this, do surgery
I cut out any two-sphere that does not bound a solid ball
I cut out any two-torus that does not bound a solid torus



The Geometrization Conjecture

I Theorem: A finite number of two-sphere and two-torus
surgeries will decompose a closed three-manifold into pieces
on which no further surgery is possible.

I Geometrization Conjecture: Any closed three-manifold can be
decomposed into pieces by surgery and each piece admits a
geometric structure based on one of the eight model
geometries.

I proposed by William Thurston in 1982



Back to the Poincaré Conjecture

I Geometrization Conjecture: Any closed three-manifold can be
decomposed into pieces by surgery and each piece admits a
geometric structure based on one of the eight model
geometries.

I the Geometrization Conjecture implies the Poincaré
Conjecture

I simply connected implies no two-torus surgery possible
I surgery by two-spheres produces closed pieces
I only closed model geometry is S3
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Curvature of a plane curve

I at a point, find radius R of the “best-
fit” circle

I define curvature as reciprocal of this
radius:

k =
1

R

I another view: rate at which the tangent vector changes with
respect to distance along curve

I pick origin and let ~C be position vector for point on curve

I tangent vector is
d~C

ds
where s is length along curve

I curvature is rate at which tangent vector changes so

k =
∣∣∣ d

ds

d~C

ds

∣∣∣ =
∣∣∣d2~C

ds2

∣∣∣



Curvature of a plane curve

I at a point, find radius R of the “best-
fit” circle

I define curvature as reciprocal of this
radius:

k =
1

R

I another view: rate at which the tangent vector changes with
respect to distance along curve

I pick origin and let ~C be position vector for point on curve

I tangent vector is
d~C

ds
where s is length along curve

I curvature is rate at which tangent vector changes so

k =
∣∣∣ d

ds

d~C

ds

∣∣∣ =
∣∣∣d2~C

ds2

∣∣∣



Curvature of a plane curve

I at a point, find radius R of the “best-
fit” circle

I define curvature as reciprocal of this
radius:

k =
1

R

I another view: rate at which the tangent vector changes with
respect to distance along curve

I pick origin and let ~C be position vector for point on curve

I tangent vector is
d~C

ds
where s is length along curve

I curvature is rate at which tangent vector changes so

k =
∣∣∣ d

ds

d~C

ds

∣∣∣ =
∣∣∣d2~C

ds2

∣∣∣



Curvature of a plane curve

I at a point, find radius R of the “best-
fit” circle

I define curvature as reciprocal of this
radius:

k =
1

R

I another view: rate at which the tangent vector changes with
respect to distance along curve

I pick origin and let ~C be position vector for point on curve

I tangent vector is
d~C

ds
where s is length along curve

I curvature is rate at which tangent vector changes so

k =
∣∣∣ d

ds

d~C

ds

∣∣∣ =
∣∣∣d2~C

ds2

∣∣∣



Curvature of a plane curve

I special case: curve is graph of a function y = f (x)

I formula for curvature k(x) =

∣∣f ′′(x)
∣∣(

1 + f ′(x)2
)3/2

I example: parabola y = x2 has k(x) =
2

(1 + 4x2)3/2

-2 -1 1 2
x

1

2

3

4

y

-2 -1 1 2
x

0.5

1

1.5

2

k
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Curvature of a surface: extrinsic view

I at point P, cut surface with plane that contains the normal
vector; intersecton of surface and plane is a curve in the
plane; get curvature of this curve at P

I rotate plane around normal vector to
look at curve curvatures of all cross-
sections

I let k1 be minimum curve curvature
and k2 be maximum curve curva-
ture; define curvature of surface at
the point P as product

K = k1k2

expired license id = 3332.0594.6837.3963, date = 2005-6-30
register at www.javaview.de

I called Gaussian curvature of the surface at point P



Curvature of a surface: extrinsic view

I example: round sphere of radius R

has K =
1

R2
at all points

I example: saddle z = x2 − y2 has
K = (−2)(2) = −4 at origin

I example: “standard” torus has posi-
tive curvature on outer part and neg-
ative curvature on inner part



Curvature of a surface: intrinsic view

I let ∆T be a small triangle containing the point P; let α, β,
and γ be radian measures of the three angles

I can check how much angle sum α + β + γ differs from π

I define curvature at P by

K = lim
∆T→P

π − (α + β + γ)

area of ∆T

I example: triangles in Euclidean
plane have α + β + γ = π so K = 0

Α

Β

Γ



Curvature of a surface: intrinsic view

I example: triangles in sphere have
α + β + γ > π so K > 0

Α

Β

Γ

I example: triangles in hyperbolic
plane have α + β + γ < π so K < 0

Α

Β

Γ
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Geometry on manifolds
I geometry is encoded in the expression for ds

I let (x1, x2) be some generic coordinates for the Euclidean plane
I previous examples used x1 = r and x2 = θ
I general expression for ds is

ds2 =
2∑

i=1

2∑
j=1

gij dxi dxj

I think of the gij as entries in a 2× 2 matrix g
I example: for hyperbolic geometry

g11 =

(
1

1− r2

)2

g22 =

(
r

1− r2

)2

g12 = g21 = 0

g =


(

1
1−r2

)2

0

0
(

r
1−r2

)2


I g is called a metric and the gij are components of the metric

I must be symmetric and positive definite (so ds2 ≥ 0)
I easily generalize to higher dimensions by letting indices i and j

range from 1 to n
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Curvature of a manifold

I basic idea: at a point, use Gaussian curvatures of
two-dimensional surfaces through that point; these are called
sectional curvatures

I information on sectional curvatures encoded in Riemann
curvature tensor Rm

I think of Rm as machine that eats four vectors, spits out a
number

I Rm(~a,~b,~c , ~d) is a number with specific geometric
interpretation

I special case: pick ~u and ~v to be perpendicular unit vectors

I Rm(~u, ~v , ~u, ~v) is the sectional curvature for the surface to
which ~u and ~v are tangent



Curvature of a manifold

I there is a formula for components Rmijkl that involves second
derivatives of the metric components gij with terms like

∂2gij

∂xk∂xl

I two curvature quantities derived from Rm
I let ~ei be unit vector tangent to xi coordinate direction

I Ricci curvature Rc defined by Rc(~a,~b) =
n∑

i=1

Rm(~ei ,~a,~ei ,~b)

I scalar curvature R defined by R =
n∑

j=1

Rc(~ej ,~ej)

I think of these as averages of sectional curvatures
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Curve shortening

I simple topology problem: is any closed curve in the plane
(with no self-intersections) homeomorphic to a circle?

I easy answer for a convex curve: use radial projection

I need a complicated way to approach the problem for a more
general closed curve; will look at a not-so-obvious idea



Curve shortening

I define a motion of the curve by assigning to
each point a velocity that is perpendicular
to the curve at that point with magnitude
equal to the signed curvature

∂~C

∂t
= k ~N

missing license, cannot find = /Users/martinj/Desktop/JavaView/Java/rsrc/jv-lic.lic
register at www.javaview.de

I this is a partial differential equation in the category of heat
equations

I analyze the initial value problem for this equation and find
(Gage, Hamilton, Grayson, mid 80s)

I for any initial curve, a solution exists
I the length and area enclosed by the evolving curve decrease in

time with area decreasing linearly
I evolving curve becomes circular as area goes to zero

I can rescale to keep length constant in which case evolving
curve converges to a circle as t →∞
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Ricci flow
I analog of curve shortening for a general manifold
I Ricci flow defined by an evolution equation for the metric

∂gij

∂t
= −2 Rcij

I sometimes convenient to rescale so volume of evolving
geometry on manifold is constant; can do this by including an
addition term

∂gij

∂t
= −2 Rcij +

2

3
R̄gij

where R̄ is the average of the scalar curvature over the
manifold

I study initiated by Richard Hamilton with focus on dimension
three

I fairly easy general results
I any symmetry of the initial metric is preserved in the evolving

geometry of solution
I if the normalized flow converges, the limit is an Einstein

geometry which are well understood
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Ricci flow approach to geometrization

I first major result (Hamilton, 1982): if the initial metric has
positive Ricci curvature at all points, then the (normalized)
Ricci flow has a solution that converges to the geometry of
the round three-sphere

I if Ricci flow does not converge, look at two cases depending
on whether curvature remains bounded at all points or not

I (Hamilton, 1999) if curvature remains bounded, manifold can
be decomposed (with torus surgeries) into pieces that admit
geometric structure

I unbounded curvature at a point corresponds to the geometry
‘pinching down” in a singularity

I Hamilton conjectured that these pinching singularities are
related to two-sphere surgeries

I idea: stop flow just before singularity, do surgery, restart flow
on each resulting piece



Ricci flow approach to geometrization

I Hamilton’s conjecture: For any initial metric on a
three-manifold, Ricci flow with surgery with result in a finite
number of pieces each of which admits a model geometry.

I work of Gregory Perelman
I three preprints in 2002-2003
I geometry near any singularity has standard structure on which

surgery is possible
I there are finitely many singularity formations

I within the last year, several groups have independently
released more complete versions of a proof based on the work
of Hamilton and Perelman

I Perelman offered a Fields Medal

I Science Magazine “Breakthrough of the Year” for 2006
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